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Abstract: In this work, we compare the blood aggregation parameters measured in vitro by 
laser aggregometry and optical trapping techniques in blood samples with the parameters of 
blood rheology measured in vivo by digital capillaroscopy in the nail bed capillaries of 
patients suffering from the hypertension and coronary heart disease. We show that the 
alterations of the parameters measured in vivo and in vitro for patients with different stages of 
these diseases are interrelated. Good agreement between the results obtained with different 
techniques, and their applicability for the diagnostics of abnormalities of rheological 
properties of blood are demonstrated. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

A typical adult human body comprises more than 100 billion blood vessels. More than 99% 
of these vessels, microvessels and capillaries, comprise the microcirculatory network [1]. This 
network operates with numerous control and compensatory mechanisms aimed at 
pathological changes occurring in this complex system. The earliest detection of 
microcirculation disorders is the best way to prevent possible complications of cardiovascular 
diseases and thus provide a well-timed start of treatment. An illustration of this thesis could 
be the result of our study on the early detection of impaired microcirculation in patients with 
prehypertension [2]. Based on perennial investigations [3] Mchedlishvili concluded that the 
blood movement in capillaries is primarily dependent on the “structure” of the flowing flux 
that determines the resistance to blood advancement in the microvessels rather than on the 
well‐known hydrodynamic relationships characteristic of the larger blood vessels. 

In human body, the processes of red blood cells (RBC) aggregation and disaggregation are 
in a state of relative equilibrium. However, mechanisms for restoring the equilibrium after 
alterations become not sufficiently effective with age. This is especially pronounced for 
patients suffering from arterial hypertension (AH) and coronary heart disease (CHD). 
Different physiological factors are involved in functional and structural alterations of 
microcirculation in AH. Activation of the renin-angiotensin-aldosterone system, enhanced 
growth of the smooth muscle cells of the media, remodeling of the extracellular matrix, and 
elevated collagen and fibronectin deposition accompany the development of this disease [4]. 
Hypertension significantly influences the microcirculatory vascular bed, restructures it and 
deteriorates its functioning [5]. Detection of early signs of microcirculatory changes in AH 
allows for new approach to diagnosis and treatment of hypertensive patients, and as a result, 
reduces the risk of possible complications [6,7]. 
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Much of the research in clinical and experimental cardiology focuses on the problems 
associated with myocardial contractility and perfusion deterioration due to lesions of the 
coronary arteries. However, quite recently, an increasing interest of researchers was directed 
to rheologic and microcirculatory disorders in heart diseases. This is due to the growing 
awareness that the delivery of oxygen and nutrients to the heart tissue mainly depends on the 
coronary microcirculation and rheological properties of blood [8–10]. 

The study of RBC aggregation parameters is also important for modern cardiology 
because in the last decade, high-performance oral anticoagulants have appeared in the arsenal 
of cardiological drugs that have a powerful effect on the coagulation properties of blood [11]. 
Along with antiplatelet agents, these drugs, in addition to their benefits, have a high risk of 
inducing bleeding. Administration of the antiplatelet and anticoagulants agents into blood is 
based on general assumptions about the average doses of the drug, which often do not fully 
comply with the requirements of the personalized medicine. As a rule, monitoring the 
effectiveness of the treatment carried out is not sufficient, especially when using the so-called 
New Oral Anticoagulants (NOAC), for which the necessary laboratory tests have not been 
developed yet. However, overdose and uncontrolled intake of anticoagulants and antiplatelet 
agents can cause serious hemorrhagic complications [12,13]. On the other hand, insufficiently 
effective antiplatelet therapy leads to complications of different kinds, associated with the risk 
of increased thrombosis. 

One of the techniques for in vivo studying the rheological properties of blood is digital 
capillaroscopy – an optical in vivo microscopy technique allowing for direct visualization of 
the superficial skin microvessels and tissue surrounding them. Original image-processing 
software provides non-invasive quantitative assessment of static and dynamic parameters of 
microcirculation [14]. 

It also allows for estimating the density of the capillary network, the degree of 
perivascular tissues oedema, the diameters of the capillary sections. In addition, this 
technique provides an opportunity to assess the capillary blood velocity, as well as visualize 
the presence of blood aggregates. The RBC aggregates formation usually occurs against the 
background of the capillary blood flow velocity reduction and stasis [15,16]. 

To measure the aggregation parameters on a large number of RBCs the diffuse light 
scattering method based on registration and subsequent analysis of intensity of light scattered 
from the layer of whole blood is used. This method is implemented in several commercial 
systems: laser-assisted optical rotational cell analyzer LORCA (Mechatronics, Netherlands) 
[17], laser aggregometer and red blood cell deformometer LADE (Rheomedlab, Russia) 
[18,19], and fully automatic erythrocyte aggregometer FAEA (Myrenne, Germany) [20]. 
During the last two decades, a new device RheoScan (RheoMeditech, Seoul, Korea) for 
studying RBC aggregation in whole blood samples in vitro was developed [21]. Another 
optical approach for studying heart failure severity in humans suggested was based on 
imaging of the viable epidermis around the nailfold capillaries [22]. To measure RBC 
aggregation on the level of individual cells laser tweezers (laser traps) are used [23]. 

The aim of this study is to analyze the relationships of the results obtained in vivo with 
capillaroscopy and in vitro with RBC aggregometry and laser tweezers in order to assess the 
pathologic alterations of the microrheologic properties of blood in patients with such wide-
spread cardiovascular diseases as arterial hypertension (AH) and established coronary heart 
disease (CHD). 

2. Materials and methods 

In this work, we used three optical techniques for assessing microrheologic and 
microcirculatory parameters of blood: laser aggregometry, optical trapping and manipulation 
of individual red cells, and vital digital capillaroscopy. 

In vitro measurements of microrheologic properties of blood that characterize the 
aggregation of erythrocytes were carried out on large ensembles of cells. Measurements were 
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performed on whole blood samples (macrolevel), and also on the singe cell interaction level 
(cellular microlevel) in highly diluted suspension of RBCs in blood plasma. Detection of 
diffuse light scattering from a layer of whole blood (the method of laser aggregometry) allows 
us to get the parameters of RBC aggregation that characterize the average time of aggregate 
formation as well as determine the relative amount of aggregated cells. Using the method of 
optical trapping, we can manipulate individual cells without mechanical contact, measure the 
forces of RBC interaction during their aggregation and the aggregation time. In vivo 
visualization of blood microcirculation with digital capillaroscopy technique allows us to 
determine visually the presence of blood aggregates and stasis in blood flow, and calculate 
the capillary blood velocity (CBV). 

Comparison of the results obtained using these three in vitro and in vivo techniques can 
clarify the effects of microrheological parameters on capillary blood flow, and also shed light 
on the possibility of using in vitro measurements to characterize native blood 
microcirculation. 

2.1 Laser aggregometry technique 

In order to assess the aggregation parameters on whole blood samples we used laser 
aggregometer RheoScan which utilizes the method of diffuse laser light scattering (laser 
aggregometry) [19,21]. 

Disposable microcuvettes that were used during the experiment consist of a small flat 
reservoir for whole blood with a thickness of 300 μm and diameter of 5 mm. Inside the 
reservoir there is a thin magnetic stirrer bar that can rotate when an electrical field is present 
inside the microcuvette thus stirring its contents. Whole blood samples of 8 μl were 
administered into the reservoir using a micro-doser for each measurement. 

The process of measurement begins after the microcuvette is put inside the device. It 
records the time dependence of the intensity of laser light (wavelength of 633 nm) scattered 
forward by the blood sample, regarded as the RBC aggregation kinetics (Fig. 1). First, the bar 
rotates at a high speed, thus creating an external shear stress that destroys all the aggregates 
that have already appeared in the sample. Then, the rotation is abruptly stopped (time t = 0) 
and the process of spontaneous aggregation of erythrocytes at rest (without any external shear 
stress) in our sample begins to take place. Laser beam shines on the blood reservoir and is 
scattered by the individual cells and the newly forming aggregates. After some time the 
intensity of light scattered in forward direction increases because of the increase of the 
average size of the scattering centers due to the formation of aggregates. This process of 
spontaneous aggregation is accomplished after approximately 2 minutes when the scattered 
light intensity reaches its maximum value indicating that almost all the cells have aggregated 
(Fig. 1).  

Most of aggregation parameters measured with the techniques based on light scattering 
are significantly influenced by the hematocrit of the blood samples due to the dependence of 
scattered light intensity on the volumetric concentration of scattering centers – red blood cells 
[21]. In this work, all measurements by laser aggregometry were implemented in the 
RheoScan device and were performed on whole blood samples after normalizing the 
hematocrit to the value of 40% by autologous blood plasma. 
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the needed intensity gradient in the focal area of the beams (the positions of laser traps are 
shown with arrows in Fig. 2). Upon passing the lens system the beam is split by the dichroic 
mirror, the larger part of the intensity being directed to the aperture of the camera lens 
Olympus (х100, N.A. = 1, water immersion), while the smaller part – to the photodetector to 
measure its power. The power of each beam can be changed using half-wave plates that are 
connected to electric motors with small steps of rotation. One beam is always stationary, 
while the second one can be moved by rotatable mirror. This way we are using 2 areas of 
trapping: one is stationary, one can move inside our sample. A lens and CMOS-camera are 
installed vertically and are illuminated by white light from under the sample. 

The cuvette is placed on a motorized platform. It consists of an object and a cover glass 
plates with the distance between them equal to 100 μm created by double layer of adhesive 
tape on the sides. The suspension of erythrocytes is diluted in plasma (1:1000 proportion) and 
is placed between the glass plates using a micro-doser. After that it is sealed off by Vaseline 
to prevent unwanted currents and evaporation. 

Before any measurements can take place, a calibration procedure must be performed to 
find one-to-one relation between the trapping force Ftrap and the beam power. It was made by 
matching Ftrap with the force of viscous friction acting on the trapped cell when the platform 
was moved with a controlled speed relative to the trap. Calibration procedure is described in 
details in [24]. The maximum trapping force achieved was 15 pN with the laser power being 
30 mW in the focal area. The aggregation force FA is defined as the trapping force Ftrap which 
is minimally sufficient for preventing the two cells from overlapping during the aggregation 
process. 

The procedure of measuring FA and aggregation time consisted of several steps (Fig. 3). 

 

Fig. 3. Photographs illustrating step by step the method of RBC aggregation force 
measurement. Crosses indicate the positions of the traps, white and black arrows point in the 
direction of the forces applied (FA is white, Ftrap is black). Interaction of two single RBCs 
results in formation of a doublet aggregate (see Visualization 2 and Visualization 3). 

During the first step two RBCs were trapped with the beams and were aligned parallel to 
each other by moving the platform. So, one cell was trapped by the stationary beam, the other 
one by the movable trap. In the second step the erythrocytes were moved closer together until 
their interaction area reaches approximately 40% of the area of each cell. In the final step the 
movable beam power was slowly decreased until the trapping force (black arrow in Fig. 3) 
was no longer sufficient to resist the spontaneous aggregation force (white arrow) between 
the two cells. After that the cell can escape the trap and complete the aggregation (due to Ftrap 
≤ FА). At this moment the laser power is recorded and FA is calculated. Also, the aggregation 
time needed for full overlapping of the cells is measured. 

For each sample the measurements of FA and aggregation time were carried out on at least 
15 pairs of cells. The values were averaged to get the final results. All experiments with 
optical traps were conducted at room temperature in a temperature-controlled room. 

2.3 Vital digital capillaroscopy (VDC) 

Following a minimum 15 minutes seated rest, the in vivo microvascular measurements were 
conducted between 9 and 11 am in a quiet temperature-controlled room (the temperature was 
maintained between 22 and 23.5 °C), with the subject in the seated position and the left hand 
at the heart level. All participants were required to refrain from smoking and caffeinated 
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drinks one day before the examination. Capillary blood flow velocity (CBV) was measured in 
the eponychium of the fourth or third finger of the left hand. 

Skin temperature was measured at the dorsal middle phalangeal area of the tested finger of 
the left hand by medical precision thermometry; the mean skin temperature was 33.2 ± 1.7 °C 
with no significant differences in the studied group. 

Nail fold capillaries were visualized using the digital capillaroscope Kapillaroskan-1 
(AET, Russia) equipped with high speed CCD-camera (1/3’’ monochrome progressive scan 
IT CCD sensor, resolution 640 x 480 px, frame rate 200 fps full frame), TM-6740GE (JAI, 
Japan). The nail bed illumination was achieved with a LED-based illuminating system. Two 
ranges of the total magnification (125x) and (400x) were used to visualize the nail bed 
capillaries. 125x magnification was used for obtaining the panoramic images of the 
capillaries, while more detailed imaging of single capillaries was performed at 400x total 
magnification and included the measurement of static parameters (capillary length and 
diameters in different parts) and CBV in different parts of the capillary. We also recorded the 
presence or absence of blood aggregates in the capillaries (Fig. 4) from the analysis of 
obtained digital microscopy images and video movies. 

 

Fig. 4. Visualization of RBCs in the capillary bed: normal laminar capillary blood flow with 
absence of RBC aggregates – Aggregates = 0 (left image); capillary blood flow with presence 
of RBC aggregates – Aggregates = 1 (central image); results of image processing for detection 
of aggregates (red contours) in the capillary bed (right image). 

For determining of the CBV after recording the video fragment the program stabilizes the 
dynamic images of the capillaries and then processes the images in the specified region of 
interest in the offline regime. The tracks of specific spots (RBCs) differ in the level of light 
intensity. The program marks them and then recognizes in the next frame. The program 
determines the average velocity along the axis of the capillary over 5 seconds long time 
intervals (500 frames). The CBV is estimated in 6 capillaries and the results are averaged. We 
estimated CBV only in the capillaries of the first line, where the capillaries are located within 
one layer. Thus, the obtained values of CBV are not affected by the movement of blood in the 
vessels lying above and below the investigated capillary. Detailed procedure of CVB 
measurements is described in [25]. Usually, at rest in healthy people not taking caffeine-
containing substances and drinks on the eve of the study, the average CBV varies in the range 
from 800 to 1500 µm/s. 

In this paper, we make a decision about the two states of the presence or absence of RBC 
aggregates in the capillaries based on visual processing of the nail bed images and videos 
obtained with VDC technique in vivo. The criteria of distinguishing RBC aggregates presence 
in the capillary blood flow can be formulated as follows: 

1. Blood aggregates are clusters of blood cells that form autonomous conglomerates 
separated by plasma gaps. 

2. Conglomerates do not merge when moving along the capillary bed. 

3. The appearance of aggregates in most cases is accompanied by slowing down of the 
capillary blood velocity. 
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Thereby, the determination of the presence of RBC aggregates in the capillary blood flow 
was performed by visual assessment of nail bed capillaries images and videos according to 
the scale: the absence of aggregates in the capillaries — 0, the presence of aggregates in the 
capillaries — 1. In case of visual detection of at least several distinguished clusters of RBC in 
the flow we considered the state as Aggregates = 1, otherwise the Aggregates state was 
indicated by 0 (Fig. 4). 

In this work, registration the CBV dependence on time was used to reveal the presence of 
a stasis, as a sign of a pronounced deterioration in the rheological properties of blood. The 
minimum duration of the blood flow halting in the capillary, which in our study is classified 
as stasis, is 0.25 sec. Generally, the duration of stasis can reach several seconds. 

 

Fig. 5. Time dependence of CBV measured in vivo by VDC for a patient with CHD. 

Figure 5 demonstrates the dependence of CBV on time during 30 seconds of 
measurements in a patient with CHD. In the center of the graph, one can see a drop in CBV to 
zero. The duration of this stasis was 1.16 sec. In our study, the presence of a stasis in the 
capillaries was assessed as “1” if CBV remained about zero more than 0.25 sec in at least one 
visualized capillary; otherwise the absence of a stasis was evaluated as “0”. Accordingly, the 
higher CBV, the lower probability of the stasis. 

2.4 Blood samples 

All in vitro measurements were carried out using samples of whole human blood and 
erythrocyte suspensions. In our experiments, we have taken into account the latest 
recommendations for hemorheoligical laboratories made by an international expert team to 
standardize hemorheological methods [26]. The samples were kept at 37°C during the 
experiment and were used only during the first 3 hours after blood draw from the cubital 
veins of donors on an empty stomach. All blood samples were collected into containers 
(Vacuette EDTA K3E tube, 1.8 mg/ 1 ml of blood, total volume 4.5 ml) with EDTA as an 
anti-coagulant agent. 

Laser aggregometry measurements was performed with whole blood. A highly diluted 
erythrocyte suspension was used for measuring the time and force of aggregation by the laser 
tweezers. The dilution was made with autologous poor platelets plasma with the final 
erythrocytes concentration of about 0.1%. Plasma was acquired by centrifuging in a following 
manner: firstly, centrifuging for 10 minutes at 170g, then centrifuging twice for 10 minutes at 
3000g. 
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2.5 Experimental groups and statistics 

Overall, 88 patients with arterial hypertension were enrolled in the study. They were divided 
into two groups. First group enrolled only patients with hypertension without cardiovascular 
complications (n = 48) and second group included patients (n = 40) with established coronary 
heart disease (CHD). Comparison of clinical backgrounds between hypertensive patients with 
and without coronary heart disease (CHD) is presented in Table 1. 

The average age of all patients was 62.8 ranging from 24 to 87 years, 51.7% of them were 
males. In the group of hypertensive patients without CHD, females prevailed - 28 persons 
(58.4%). In the group of patients with CHD males prevailed (63.4%). The body mass index 
(BMI) for the groups was significantly higher than normal value, but not statistically 
significantly different. The mean age was also higher in the group of patients with CHD. The 
left ventricle ejection fraction in the group with CHD was statistically lower in comparison 
with group of hypertensive patients without CHD. 

Table 1. Comparison of clinical backgrounds between patients with and without 
coronary heart disease (CHD) 

 Overall 
(n = 88) (%) 

Hypertensive 
patient 
without CHD 
(n = 48) (%) 

Hypertensive patients 
with CHD 
(n = 40) (%) 

Male 46 (51.7%) 20 (41.6%) 26 (63.4%) 
Age. years (range) 62.8 (24-87) 60.4 (24-83) 67.7 (52-87) 

BMI (kg/m2) 29.7 ± 5.4 29.5 ± 5.3 29.9 ± 5.6 

Current smokers 9 (10.1%) 4 (8.3%) 5 (12.5%) 

Systolic BP (mmHg), Office blood pressure 143.0 ± 26.8 147.7 ± 31.5 138.1 ± 32.9 

Diastolic BP (mmHg), Office blood 
pressure 

85.9 ± 16.0 88.3 ± 18.5 83.3 ± 19.9 

Heart rate (bpm) 73.2 ± 18.5 76.3 ± 23.4 69.8 ± 16.6 
LV ejection fraction (%) 59.0 ± 7.2 59.5 ± 4.9 56.9 ± 8.9 

Previous myocardial infarction 13 (14.6%) - 13 (32.5%) 

Angina pectoris 32 (35.9%) - 32 (80%) 

Bypass grafts 4 (4.5%) - 4 (10%) 

Stents 7 (7.9%) - 7 (17.5%) 

Diabetes mellitus 17 (19.1%) 7 (14.6%) 10 (25%) 

Aspirin 42 (47.2%) 21 (43.8%) 21 (52.5%) 

Clopidogrel 3 (3.4%) 0 3 (7.5%) 

Anticoagulants 10 (11.2%) 0 10 (25%) 

Diuretics 48 (53.9%) 25 (52%) 23 (57.5%) 

Standard Student T-test was used to analyze statistical difference between sets of values 
measured from compared groups. The difference was considered statistically significant when 
p < 0.1. 

The study was approved by the ethics committees of the Medical Research and Education 
Center of Lomonosov Moscow State University. All donors were informed on the purpose of 
the study and agreed to participate in this study. 

3. Results and discussion 

Blood samples from every patient were investigated by methods of laser aggregometry and 
optical trapping. Microrheologic parameters of RBC aggregation (aggregation index, 
characteristic time of aggregate formation, aggregation force and time) were measured in 
vitro. Before blood was drawn from the patients all of them underwent the microcirculation 
measurements in vivo by means of vital digital capillaroscopy (VDC) technique. 
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4. Conclusion 

In this work, a series of in vitro measurements of RBC aggregation parameters with blood 
samples obtained from the patients suffering from hypertension and coronary heart disease 
were performed. Aggregation index and characteristic time of aggregates formation were 
measured by laser aggregometry technique in whole blood samples comprising large 
populations of RBCs. In addition, forces and time of aggregation on individual cells level 
were obtained with an optical trap. The capillary blood velocity, presence or absence of RBC 
aggregates and stasis in blood flow were assessed in vivo with vital digital capillaroscopy. 
The relationships between the parameters measured in vitro demonstrate good agreement of 
the results for the patients distinguished into subgroups in accordance with VDC data 
obtained in vivo. In particular, impairing of capillary blood flow in case of AH or CHD leads 
to unconditional deterioration of aggregation parameters of blood cell. 

Our results also clearly demonstrate the possibility of using laser aggregometry and 
optical trapping for estimating the alterations of microrheologic and, consequently, 
microcirculation parameters. Alterations of RBC aggregation parameters measured in vitro 
can be used to evaluate the alterations of vital capillary blood flow parameters in human 
body. 
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